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Numerical Simulation of Three-Dimensional Self-Gravitating Flow

John V. Shebatin*
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The three-dimensional flow of a self-gravitating fluid is numerically simulated using a Fourier pseu-

dospectral method with a logarithmic variable formulation. Two cases with zero total angular momentum

are studied in detail, a 323 simulation (Run A) and a 643 simulation (Run B). Other than the grid size, the

primary differences between the two cases are that Run A modelled atomic hydrogen and had considerably

more compressible motion initially than Run B, which modelled molecular hydrogen. The numerical results

indicate that gravitational collapse can proceed in a variety of ways. In the Run A, collapse led to an

elongated tube-like structure, while in the Run B, collapse led to a flatter, disk-like structure.

*Research supported by the National Aeronautics and Space Administration. This work was done while the author was in

residence as a Visiting Scientist at the Institute for Computer Applications in Science and Engineering (ICASE), NASA Langley

Research Center, Hampton, VA 23681.
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1 Introduction

In recent years, Fourier methods have been used to simulate collapse of a gas due to a newtonian gravitational

self-interaction, both in one-dimension (1D) and in two-dimensions (2D). In the 1D case [1], the flow was

assumed to be isentropic, 64 grid points were used, and it was found necessary to modify the values of density

at each time-step by adding a spatial constant so as to ensure sufficient positive-definiteness of the density

at all grid points. In the 2D case [2], the flow was again assumed isentropic, the maximum grid size was

2562 , the density was again 'modified' to ensure numerical stability, and, in addition, the flow was initially

turbulent (with the notable result of hinderng collapse).

Here, this work is extended in four ways. First, the full polytropic gas-dynamic equations are solved

with no isentropic approximation. (Collapse is assumed to take place on length and time scales such that

no overall cosmological expansion need be imposed on the dynamics.) Second, simulations are performed on

three-dimensional grids (323 and 643). Third, the governing equations are written so that the logarithms of

the density and temperature are solved for, rather than the density and temperature directly. This allows

explicitly for the preservation of positive-definiteness of density, temperature, and pressure, since these are

arrived at by exponentiation. Fourth, bulk viscosity is utilized to model more accurately the properties of

molecular hydrogen.

These extensions allow for more realistic simulations of the self-gravitational collapse of clouds of either

atomic (H) or molecular (H2) hydrogen, at least up to the point where density gradients are so steep that

the computer code loses accuracy. In particular, two cases with zero total angular momentum are studied

in detail, one on a 323 grid (Run A: H) and the other on a 643 grid (Run B: H2). The primary difference

between the two cases (other than grid size and chemical constituents) lies in the ratio of compressible kinetic

energy to total kinetic energy. Run A had an initial ratio of 0.5, while Run B had an initial ratio of 0.1.

Collapse from a constant density initial state is clearly different for the two cases: in Run A, the collapse is

to a tube-like structure, while in Run B, it is to a flat, disk-like structure (a Zeldovich 'pancake' [3]).

Following brief descriptions ,of the governing equations and numerical method, numerical results will

be discussed. Flow parameters will be defined, as well as measures of anisotropy which are useful for

quantitatively describing self-gravitational collapse. Finally, a summary and conclusion will be presented.



2 Physics & Numerics

Placing p = e x and T = e a into the standard polytropic gas equations yields the basic non-dimensional

equations in a logarithmic formulation [4]:

0A

0--{+u.VA = -V.u

0u 1 eaV( A
_-+u. Vu - +_)-V¢7

(1)

(2)

0_ _ [v2_ + (w)_]
_-+u. Vc = -(7-1)V'u+_

_(_-1)_ [_ ]+ _7_) n_rq + Z(v-u) =

(3)

Here, rq = O_uj + Oju_ -2/3 6_jV. u and I = [6_j] is the unit dyadic. In (2), • is the newtonian gravitational

potential which satisfies V2_ = k._p, where k._ is the Jeans wavenumber [5]; for Run A, kl = v_ and for

Run B, ks = 1.5. The adiabatic index 7 is constant, and since the gas is either H or H2, 7 = 5/3 for Run A

and 7 = 7/5 for Run B. The dimensionless Shear viscosity/_ and thermal conductivity _¢are also constant;

the Prandtl number, Pr = 7#/_;, has a value of_ 1, which will determine to: _¢= 7# (/J = 0.02 for Run A

and p = 0.005 for Run B). The ratio of bulk to shear viscosity, fl =/JB/#, will also be constant: fl = 1 for

Run A (to represent a small admixture of H2 with primarily H) and fl = 32 for Run B (only H2) [6].

Details of the numerical method used here have been given previously [4, 7]. The only modification

lies in the addition of the self-gravitation term -_7(I) in (2). Using V2(I ) = k_p and Fourier transformation

gives -V(I) _ ik_kk-2p(k), which is very straightforward to implement when (1)-(3) are written in terms _"

of Fourier coefficients (as is done in the method utilized here). We now proceed on to the results of the

simulations.
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3 Results

Run A used a 323 spatial grid and ran a total of 15300 time-steps (At_s), with 2 cpu-see/Al on a Cray YMP.

Run B used a 643 spatial grid and ran a total of 49800 At's, with 13 cpu-sec/At, also on a Cray YMP.



Run A was terminated at simulationtime t = 6.57 when the dissipationwave number kD (asdefinedin [4])

had increasedso as to equal the maximum wave number kma_ = 16. Similarly,Run B was terminated at

simulationtime t = 5.01 when the dissipationwave number kL) had increasedso as to equal itsmaximum

wave number k,_,== 32. The microscaleReynolds number RA (alsodefinedin [4])ranged between 17 and

32 for Run A, and between 90 and 170 for Run B.

In the following,IQ) willdenote the volume average (or averagevalue per gridpoint)ofany quantity Q.

Thus, the variousenergiesassociatedwith the collapsingcloudsofgas are the kineticenergy EK = (pu2/2),

the internal energy EI = (pT/[7(7-1)]), the gravitational energy EG = (p_/2), and the total energy

E = EK + El + Ea. The time evolution of these energies is shown in Figure 1 for Runs A and B.

As is evident in Figure 1, collapse did not begin immediately, but rather after the initial turbulent motion

had decayed to a lower level, in accord with previous results [2]. (The initial turbulent velocity spectra was

]u(k)l 2 ,_ k 4 exp-2k2/k2o, with ko = 3 for Run A and ko = 4 for Run A.) However, once collapse had

progressed sufficiently, both the mean-squared dilatation @ _= _-((V. u) 2) and the mean-squared vorticity

(the enstrophy) _2 = ½_(V × u) 2) began to increase. This is shown in Figure 2, where it is clear that

Run A had more compressible velocity initially than Run B did. [The compressible part of the velocity is

uc(k) = k-2kk • u(k).] Note that both @ and f/begin to increase near the end of the runs.

The relative amount of compressible velocity in a flow is quantified by the ratio X = (uc2) / (u2), whose

importance was first recognized by Passot and Pouquet [8]. The time evolution of X for Runs A and B

is shown in Fiqure 3. For Run A, X _ 0.25 before collapse initiates, while for Run B, X "_ 0.02 during

the equivalent time period. Although there are many differences between Runs A and B, the qualitatively

different behavior of X prior to collapse may be related to the qualitatively different dynamical behavior of

the gas in Runs A and B during the collapse itself.

The results of gravitational collapse in Runs A and B are seen in Figures 4 and 5. These figures represent

the densities of the respective clouds of gas at the end of each run and are drawn by finding the point of

maximum density in either run, extracting values of density on the three orthogonal planes (z - y, y- z, and

z - x) which contain this point, and then shifting the points on these periodic planes so that the maximum

density lies in their centers. In Figure 4 it is clear that the gas has collapsed to a tube-like structure; in

Figure 5 it is clear that the gas has collapsed to a much flatter, somewhat irregular, disk-like structure.

- 3



In order to get a better picture of how these structures developed, it is useful to define the following

measures of anisotropy Mj (j = x, y, z) [91:

2) 1
Mj - (4)

2 ((vp)21 2

The time evolution of the Mj for Runs A and B are shown in Figure 6. Note that the differences in the final

states of Runs A and B, as shown in Figures 4 and 5, grew directly from their initial states, rather than

i

m

going through a qualitatively different intermediate stage.

4 Summary & Conclusion

In this work a three-dimensional pseudospectral computer code was used to simulate the initial stages of

the gravitational collapse of clouds of either atomic or molecular hydrogen. The full polytropic gasdynamic

equations were solved, with the primary dynamical variables being In p, In T, and u. In addition to shear

viscosity, bulk viscosity was also utilized to more exactly model the properties of molecular hydrogen.

Two runs were examined in detail, Run A (on a 323 grid) and Run B (on a 643 grid). As the figures

show, the nature of the collapse was different for each run: in Run A, the collapse proceeded to a quasi-lD

structure, while in Run B, the collapse proceeded to a quasi-2D structure. One primary difference between
?

the runs lay in the relative amount of compressible turbulent kinetic energy prior to collapse. This suggests

that turbulent density fluctuations may have an important role to play during gravitational collapse.

There is a large amount left unexplored in al ! of this, with respect to variation in initial conditions,

transport properties, and grid size, or with respect to the effects of magnetic fields or radiation, for example.

The sheer length of a single, moderately resolved simulation (643 _ ,'_ 200 Cray YMP cpu:hours) precludes

any quick but thorough investigation of 'parameter space.' Instead, it is clear that only a stow and patient

effort (along with exponential increases in computer power) will yield the results and insight which are

sought.

I
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Figure 1. Energies vs time for (a) Run A and (b) Run B.
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Figure 2. Enstrophy _ and mean-squared dilatation W for Runs A and B.
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Figure 3. Compressibility ratio Z for Runs A and B.
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Figure 4. Density contours in orthogonal planes intersecting

the point of maximum density ( Pmax = 22.2) at t=6.57

for Run A.
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